Machine Learning methods for Quantitative Radiomic Biomarkers
نویسندگان
چکیده
Radiomics extracts and mines large number of medical imaging features quantifying tumor phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection methods and twelve classification methods were examined in terms of their performance and stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased evaluation of different machine-learning methods, publicly available implementations along with reported parameter configurations were used. Furthermore, we used two independent radiomic cohorts for training (n = 310 patients) and validation (n = 154 patients). We identified that Wilcoxon test based feature selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a classification method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic performance with high stability against data perturbation. Our variability analysis indicated that the choice of classification method is the most dominant source of performance variation (34.21% of total variance). Identification of optimal machine-learning methods for radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.
منابع مشابه
Prostate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کاملRadiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.
Radiomics describes a broad set of computational methods that extract quantitative features from radiographic images. The resulting features can be used to inform imaging diagnosis, prognosis, and therapy response in oncology. However, major challenges remain for methodologic developments to optimize feature extraction and provide rapid information flow in clinical settings. Equally important, ...
متن کاملRadiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
INTRODUCTION "Radiomics" extracts and mines a large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of an entire tumor. In order to enhance applicability of radiomics in clinical oncology, highly accurate and reliable machine-learning approaches are required. In...
متن کاملMRI features predict p53 status in lower-grade gliomas via a machine-learning approach
Background P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. Methods Preoperative MR images were retrospectively obtained from 272 patients with primary grade II/III gliomas. The patients were randomly allocated i...
متن کاملCT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.
BACKGROUND Radiomics uses a large number of quantitative imaging features that describe the tumor phenotype to develop imaging biomarkers for clinical outcomes. Radiomic analysis of pre-treatment computed-tomography (CT) scans was investigated to identify imaging predictors of clinical outcomes in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation t...
متن کامل